
About JSesh 6 sign placement

Serge Rosmorduc

 1 Introduction
JSesh was developed as an implementation of the Manuel de Codage, with the explicit goal of being
as compatible as possible with the de-facto standard, which was represented by Winglyph on one
hand and MacScribe on the other hand, with a strong focus on Winglyph compatibility. Actually,
there is a specifc converter from MacScribe format to JSesh, which is external to the current
software.

In Winglyph, the user could defne custom groups, which could be used for specifc and precise
formatting. One problem with such groups was that the group defnition was not saved in the
Winglyph document. A number of ligatures where also defned, but without a precise list.

JSesh approach is thus a bit convoluted:

– the frst approach we used was to have a “ligature editor”, as we used to have in our
tksesh software;

– however, we were reluctant to defne manually each possible group, so we tried to
propose a more general system;

– Mac Scribe had a powerful system, which allowed to defne groups like . We decided to
provide such a system (the RES system was also an inspiration, even though our system is
less versatile);

– both user feedback and knowledge of the needs of the Egyptological community led us to
propose a free-placement system, which allowed the user to place the signs exactly where
he wanted. This system is heavily used (and often overused).

 2 Simple quadrant
For simple quadrant, the sign placement depends on the text orientation.

In this discussion, we will call “hbox” a list of hieroglyphs to be composed side by side (typically
separated by “*”), and “vbox”, a list of hboxes separated by “:”.

 2.1 Horizontal text
• If the quadrant contains only one hbox (as in nw*nw*nw*nw*nw*nw), the elements are

placed side by side, as if separated by “-”.

• if the quadrant contains more than one hbox:

• For each hbox in the quadrant (separated by “:”), the “natural width” of the hbox is
computed.

• The hbox is scaled so that it doesn't exceed the maximum quadrant width (a parameter
of the program).

• The natural width of the quadrant is then computed. If it is greater than the maximum
quadrant height, the whole quadrant is scaled.

 2.2 Vertical text
The principles are the same for vertical text, except the maximum quadrant width is larger, and
that there is no vertical scaling (the maximum quadrant height is ignored).

(this part needs more details).

 3 System for absolute positioning
Example : anx\R30{{0,357,51}}**G5{{194,0,97}}

In absolute positioning, signs are separated by “**”. Each sign is followed by a triplet of
coordinates between {{ and }}. The frst coordinate is the sign absciss, the second is the sign
ordinate, and the third is the sign scale (as a percent of the sign size in the font).

Coordinates are given in a system where the top-start of the group is (0, 0), and the ordinate axis
is oriented downwards. The scale is 1 unit = 1/1000 of sign A1 natural height.

If no coordinate is given, they default to {{0,0,100}}.

 4 Advanced ligature system
In the advanced ligature system, we defne two operators which combine a single glyph and a
group. For instance, in , the group is inserted in the glyph .

The idea is that the glyph will not fll the quadrant completely (else, there would be little reason
for a ligature), and that some spaces in the bounding box of the glyph are empty, and can be fll
with the group.

Those spaces are called “zones”, and can be defned explicitly in the SVG description of the glyph,
or be automatically computed if the sign has no such explicit zone.

There are two zones: zone1 and zone2. Their exact placement depend on the sign. They are
rectangles, and their extend is not limited to the limits of the original sign. When combining a
group and a hieroglyph, the group will be placed in one of the two zones, and bounded by the
limits of the zone. If the group is too large for the zone, it will be scaled accordingly.

The ligatured group will go somewhere in the ligature zone. But where exactly ? It can stand in
the middle of the area, or stick to one of its sides. In fact, the behaviour of the layout algorithm is

not always the same. In , the “t” tends to ft on the bottom left of the rectangular area. In ,
the U36 () sign is horizontally centered, and its base rests on the bottom of the ligature zone.

The defnition of each zone contains :

– its geometry, the rectangle which will contain the group

– its gravity, which describes the way the subgroup will be placed.

If there is only one zone, it will be used for both S1 and S2 (it's the case for).

 4.1 Ligature group with hieroglyph construct
The construct, written G1^^^S2 (G1 is a group, S2 is a single glyph), will try to insert G1 in zone 1
of S2.

 4.2 Ligature hieroglyph with group construct
The construct, written S1&&&G2 (G2 is a group, S1 is a single glyph), will try to insert G2 in zone 2
of S1.

 4.3 Zones

 4.3.1 Gravity
Each zone has a gravity, which defne how the group will be placed in the zone. The gravity has
two components, an horizontal one and a vertical one.

where gravity specifcations contain up to two letters:

– “s” or “e” to ask the group to stick to the start side or to the end side of the zone). If
neither “s” nor “e” is specifed, the group will be horizontally centred.

– “t” or “b” to ask the group to stick to the top or bottom of the zone. If neither “t” nor “b”
is specifed, the group will be vertically centred.

For example, in the following drawing, the glyph is placed on the center bottom of the red zone.

 4.3.2 Explicit zones
JSesh glyphs are defned as SVG pictures. In those pictures, only the black outlines are considered
for the glyph drawing. Anything drawn in another colour is discarded. The sign bounding box
itself is defned by the bounding box of the actual black drawing, not by the bounding box of the
SVG fle. It allows us to use drawings in other colours as control/metadata. It's still a trick, and
not a clean way to do things. A cleaner system would be to use XML classes (or to extend the SVG
language).

So, the zones are defned by adding rectangles to the SVG fle. The rectangles have “zone1” or
“zone2” as ids.

 4.3.3 Computed zones
When no explicit zone information is available for a sign, JSesh will try to guess them. It will
search in three places: in bottom/front of the sign, behind the top of the sign, and below the sign
(as below).

As only two zones are used, the last two possibilities can be used for zone2. If a reasonable ft for
the third option is found, it prevails.

 4.3.3.1 Computation algorithm

To chose a zone coordinates, the algorithm will move a rectangle along a line segment, and try to
move the rectangle as close as possible to the sign without touching it.

The line segment defnes the possible position of the top-start point of the rectangle (in left-to-
right orientation, the top-left point of the rectangle).

In the present example, the barycentric coordinate of point M is 0,8.

The size of the rectangle depends on the size of the sign, and on the zone.

The result will give a position for the rectangle (actually, a barycentric coordinate, 0 being the
start of the segment, and 1 being the end of it). It is possible, in theory, that there is no result (if

0
0,8 1M

all rectangles along the line overlap the sign). But, in practice, we have chosen our parameters so
that there is always a solution. It is also possible in theory that there are more than one solution,
but it's not a practical case.

However, the solution may give poor results (for instance, may avoid any sign overlapping). In
this case, the corresponding zone is not defned. The precise conditions to keep a zone depends
on the type of zone.

This algorithm is used to compute all three zones. The parameters which difer are the rectangle
size, the line segment, and the rule to keep the zone.

 4.3.3.2 bottom/front (zone 1)

– rectangle W/2 x H/3

– from (-W/2, H/2) to (0,H/2)

with W, H being the size of the sign. The origin point for the rectangle is top-start.

Coordinate system with Y axis going downward (0,0) being top-start coordinate.

If the result has very little overlap with the original sign (barycentric coordinate t< 0.2), try again
with a rectangle of size W/4 x H/4.

If no good zone can be found (barycentric coordinate t< 0.1), there is no zone 1.

 4.3.3.3 top/behind (zone 2)

– rectangle W/2 x H/2.5

– from (W,0) to (W/2,0)

If t < 0.2, try with the following fallback: W/2 x H/3

If t is still lesser than 0.1, then the result is null.

 4.3.3.4 below (zone 2)

– rectangle W,H

– from (W/2,H) to (W,0)

if t > 0.2, try with a diferent line: from (0,H) to (W,0)

 4.4 Shortcomings of the system
The system is too rigid. Let's consider for instance those cases:

– : typically, we would like the “t” sign to be glued to the top-right of the bꜣ-sign bounding
box.

– : the Z1 sign is somewhere, more or less in the middle of the space.

– : the “k” sign does take advantage of the place behind the bꜣ-bird's neck, but it does
signifcantly overlap the sign. It's glued to the left of the box. To obtain this result, we
would also need a very large box, which would give a weird result with the frst group
(something like).

So, the actual position seems to depend on the group shape, a point which is currently not taken
into account.

The RES system deals with this problem by proposing two primitives: insert and ft (incidentally,
the hand-made kerning of HieroTeX lead to some similar solutions, see § 4.10 of HieroTeX
documentation).

The last point (which is correctly dealt with by RES, for instance), is that the box system is but a
simple approximation of the actual geometry of the signs. Using more precise placement
primitives might allow to deal with round or irregular signs.

 4.4.1 Need for horizontal and vertical axis ?
This paragraph does not deal with the current system, but indeed with all existing systems. When
a sign is centred relatively to another one, the actual centre is probably not the mathematical
centre (although the centre of gravity might be close to it). Consider for instance the basket. If
I want to center something relatively to this sign, the correct center will probably the middle of
the basket, ignoring the handle.

It might be reasonable to enrich signs defnitions with precise notation of horizontal and vertical
centers. This might also help when defning overwriting primitives (it won't work for all cases,
though).

 5 Simple Ligature
Two or more signs may be ligatured with the “&” operator. In the worst case, JSesh will currently
place them all at position 0,0. A better default is needed (placing them side-by-side, or stacking
them, for instance).

 5.1 Signs placement
For a few groups, JSesh still use predefned placements for ligatures. This is the case for
stp&n&ra. However, in most cases, JSesh tries to be clever and guess the correct way of ligaturing.

It doesn't always succeed, though.

Simple ligature are built by trying to fnd the “best” corresponding complex ligature. This can be
done with up to three signs.

 5.1.1 Three-signs ligature
A ligature of the type S1&S0&S2 is considered as a ligature around S0 (topical example : t&w&t). It
is rendered as S1^^^S0&&&S2

 5.1.2 Two-signs ligature
The frst step is to fnd the “main” sign. For instance, in theory, t&w could be resolved as t^^^w
(main sign is w, t plays the role of the inserted group) or as t&&&w (main sign is t; w plays the
role of the inserted group).

The idea is that the main sign is the largest one. In S1&S2, we consider S2 as the main sign if
0.8 height(S2) > height(S1). This favours the frst sign: S2 will be chosen only if it is signifcantly
larger than S1. If it's not, S1 will be chosen.

The rationale for this rule is that, among the ligatures, we have for instance D&i (and all ligatures
which will fll a space in the bottom of a sign). In this category of ligatures, the frst sign is the
main one, and the second sign is not always smaller than the frst.

Then once the main sign is found, the system is straightforward:

Let's call S0 the main sign, and S the other sign.

– if there are two signs, and we have

– S&S0: use S^^^S0

– S0&S: use S0&&&S

 6 Grammar
We give here a simplifed extract of the grammar of JSesh MdC format. The idea is to show the
possible interactions between the operators. Note that some of them can't be combined.

The weird aspect of some operators is due to JSesh history.

horizontalList ::= horizontalListElement (“*” horizontalListElement)*

horizontalListElement ::=

innerGroup

| complexLigature

| cartouche

innerGroup ::=

ligature

| hieroglyph

| overwrite

| “(“ subgroup “)”

| absoluteGroup

ligature::= hieroglyph (“&” hieroglyph)+

overwrite ::= hieroglyph “##” hieroglyph

complexLigature ::=

innerGroup “^^^” hieroglyph “&&&” innerGroup

| innerGroup “^^^” hieroglyph

| hieroglyph “&&&” innerGroup

absolutegroup ::= hieroglyph”{{“INT”,”INT”,”INT”}}” (“**” hieroglyph”{{“INT”,”INT”,”INT”}}”)+

	1 Introduction
	2 Simple quadrant
	2.1 Horizontal text
	2.2 Vertical text

	3 System for absolute positioning
	4 Advanced ligature system
	4.1 Ligature group with hieroglyph construct
	4.2 Ligature hieroglyph with group construct
	4.3 Zones
	4.3.1 Gravity
	4.3.2 Explicit zones
	4.3.3 Computed zones
	4.3.3.1 Computation algorithm
	4.3.3.2 bottom/front (zone 1)
	4.3.3.3 top/behind (zone 2)
	4.3.3.4 below (zone 2)

	4.4 Shortcomings of the system
	4.4.1 Need for horizontal and vertical axis ?

	5 Simple Ligature
	5.1 Signs placement
	5.1.1 Three-signs ligature
	5.1.2 Two-signs ligature

	6 Grammar

